Principal Bundles over Statistical Manifolds
نویسندگان
چکیده
In this paper, we introduce the concept of principal bundles on statistical manifolds. After necessary preliminaries on information geometry and principal bundles on manifolds, we study the α-structure of frame bundles over statistical manifolds with respect to α-connections, by giving geometric structures. The manifold of one-dimensional normal distributions appears in the end as an application and a concrete example.
منابع مشابه
Equivariant Principal Bundles over Spheres and Cohomogeneity One Manifolds
We classify SO(n)-equivariant principal bundles over Sn in terms of their isotropy representations over the north and south poles. This is an example of a general result classifying equivariant (Π, G)-bundles over cohomogeneity one manifolds.
متن کاملFlat Bundles on Affine Manifolds
We review some recent results in the theory of affine manifolds and bundles on them. Donaldson–Uhlenbeck–Yau type correspondences for flat vector bundles and principal bundles are shown. We also consider flat Higgs bundles and flat pairs on affine manifolds. A bijective correspondence between polystable flat Higgs bundles and solutions of the Yang–Mills–Higgs equation in the context of affine m...
متن کاملCategories of Symplectic Toric Manifolds as Picard Stack Torsors
We outline a proof that the stack of symplectic toric G-manifolds over a fixed orbit space W is a torsor for the stack of symplectic toric G-principal bundles over W .
متن کاملPull-backs of Bundles and Homotopy Invariance
We define the pull-back of a smooth principal fibre bundle, and show that it has a natural principal fibre bundle structure. Next, we analyse the relationship between pull-backs by homotopy equivalent maps. The main result of this article is to show that for a principal fibre bundle over paracompact manifolds, there is a principal fibre bundle isomorphism between pull-backs obtained from homoto...
متن کاملHermitian–Einstein connections on principal bundles over flat affine manifolds
Let M be a compact connected special flat affine manifold without boundary equipped with a Gauduchon metric g and a covariant constant volume form. Let G be either a connected reductive complex linear algebraic group or the real locus of a split real form of a complex reductive group. We prove that a flat principal G–bundle EG over M admits a Hermitian–Einstein structure if and only if EG is po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014